Property Values Not
Hurt by Wind Farms

Studies find properties that host wind farms are worth more after
turbines installed. Nearby properties are unaffected.

https.//www.energyandpolicy.org/wind-energy-does-not-hurt-property-values/

Ten major studies in three countries of 1.3 million property transactions over 18
years of data have found no connection between wind farms and property values.
Yet the fear of property value loss persists and is exploited by anti-wind
campaigning groups in their attempts to turn local populaces against wind
developments.

By comparison, only two moderately reliable studies with some statistical
significance found property value impacts, and they are both challenged in different
ways. Five other often referenced studies are merely case studies with no statistical
significance, done by appraisers who show strong evidence of bias, and in one case
there is clear evidence that they ignored the reality of the property they appraised.

The evidence that wind farms don‘t harm property values is robust,
methodologically sound and from reliable organizations. The evidence that wind
farms harm property values is much weaker, methodologically challenged at best
and usually from much less reliable organizations.

Respect the people and their concerns

Whether it is a home or a vacation property, people who buy or own rural property
have deep emotional drivers attached to it. For some older people, it is the home
they have been in for decades. For others, it is a rural idyll, the fantasy of a hobby
farm or country estate. For others, it is an escape from the vertical canyons,




concrete, steel and noise of the city. For most of them, it represents a very large
percentage of their finances, with all of the attendant concerns that it might turn to
dust as happened in the US with the subprime mortgage collapse in 2008. It is
worthwhile to respect the deep emotions involved in this subject. Anti-wind
advocacy groups certainly do, and while some are directly motivated by fears of
falling properties, many broader groups are using those fears to directly motivate
grassroots organizations to form to fight wind turbines.

Property values show no long-term correlation to wind turbine presence
There have been several major reports released in 2013 and 2014 that substantially
add to the evidence base for wind farms and property values.

Most recently, the largest and longest duration study was released by the Center for .

Economics and Business Research (Cebr) in the UK. They were commissioned

by RenewableUK, the industry body for wind and marine energy generation, which
in many minds will reduce the merit of the study, however, it covers over one
million property transactions in counties with wind farms over 18 years, making it
the study with by far the largest statistical base and longest perspective. The
methodology and statistics are sound. Their findings?

Our analysis of the raw house price data for transactions completed within the vicinity of
the wind farms yielded no evidence that prices had been affected by either the
announcement, construction or completion of the wind farms for six out of seven sites.

In fact, the analysis shows that on average, house prices near wind farm sites grew faster
for the periods between the start of construction and mid-2013 (0.8% annual growth)
than at the wider county-level (0.5% annual growth). One site did see a noticeable
downturn following the announcement that a wind farm would be built: however once the
turbines were erected, local house price growth returned to the county-wide norm.

As can be seen from a key graph, the average house prices within five kilometres of
wind farms track the county averages very closely over the eighteen years. What's
also of relevance to the discussion is that house prices dropped in 2008 and have
continued downward. Once again, the visibility of wind farms makes them lightning
rods for concerns that are actually caused by other things.

As a side note, Cebr excluded two wind farms from the statistical analysis because
they had too few properties within five kilometres of them for statistical
validity. This is interesting because the transactions near those wind farms — 470
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and 2,384 respectively — are greater than the total transactions in virtually all of
the studies finding harm to property values, casting those studies even more
deeply into doubt.

The most substantive is the 2013 update of the 2009 Lawrence Berkeley National
Laboratory (LBNL) study, described below in detail.

To ensure that the seriousness of this organization and its devotion to academic
excellence and scientific truth is understood, thirteen Nobel Prize winners have
been associated with the Lab and thirteen have been awarded the US National
Medal of Science, the top US honor for lifetime achievements in science. Dozens
more have received other extraordinary levels of recognition. This is an
organization that is not for sale. This is an organization that takes its independence
and excellence seriously, and accusations leveled at the studies it performs related
to being bought and paid for by the wind industry are specious and without basis.
Pertinent points are extracted here:

We collected data from more than 50,000 home sales among 27 counties in nine states.
These homes were within 10 miles of 67 different wind facilities, and 1,198 sales were
within 1 mile of a turbine—many more than previous studies have collected. The data
span the periods well before announcement of the wind facilities to well after their
construction. We find no statistical evidence that home values near turbines were affected
in the post-construction or post-announcement/pre-construction periods.

This major study controlled for significantly more variables and concerns than
previous studies and found no impact on property values from wind farms.

The LBNL also collaborated with the University of Connecticut on
an assessment of property value impacts near wind farms in the US state of
Massachusetts in 2013, publishing their results in January 2014. They spread the

net even wider:

To determine if wind turbines have a negative impact on property values in urban
settings, this report analyzed more than 122,000 home sales, between 1998 and 2012,
that occurred near the current or future location of 41 turbines in densely- populated
Massachusetts communities.

The results of this study do not support the claim that wind turbines affect nearby home
prices. Although the study found the effects from a variety of negative features (such as
electricity transmission lines and major roads) and positive features (such as open space
and beaches) generally accorded with previous studies, the study found no net effects due
to the arrival of turbines in the sample’s communities. Weak evidence suggests that the
announcement of the wind facilities had a modest adverse impact on home prices, but
those effects were no longer apparent after turbine construction and eventual operation




commenced. The analysis also showed no unique impact on the rate of home sales near
wind turbines. ]

In January 2014, a Canadian study assessed the impacts of the Melancthon wind
farms near Orangeville, Ontario — at one point the largest in Canada — on home
and farmland property values over another 7,004 property transactions. The study’s
conclusions:

The results of the hedonic models, which are robust to a number of alternate model
specifications including a repeat sales analysis, suggest that these wind turbines have not
significantly impacted nearby property values. Thus, these results do not corroborate the
concerns raised by residents regarding potential negative impacts of turbines on property
values. ‘ '

Also in 2013, the University of Rhode Island performed an assessment specifically
of property transactions in that US state. They covered 48,554 property
transactions over thirteen years, both near and far from the twelve large and mid-
sized wind turbines constructed in ten sites between 2006 and 2013.

Across a wide variety of specifications, the results indicate that wind turbines have no
statistically significant impact on house prices. For houses within a half mile of a turbine,
the point estimate of price change for properties within 12 mile relative to properties 3-5
miles away 3 is -0.2%. So our best estimate is wind towers have no virtually effect on
prices of nearby properties,

The best study in this field prior to 2013 was funded by the US Office of Energy
Efficiency and Renewable Energy. They mandated the Lawrence Berkeley National
Laboratory to study the concern and the report was delivered in 2009. Here's what
they found: '

The present research collected data on almost 7,500 sales of single- family homes situated
within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of
the study are drawn from eight different hedonic pricing models; as well as both repeat
sales and sales volume models. The various analyses are strongly consistent in that none of
the models uncovers conclusive evidence of the existence of any widespread property value
impacts that might be present in communities surrounding wind energy facilities.

It is worth noting and debunking the arguments used against the study, as they
have been recycled constantly:

= The claim: it doesn’t agree with what is obviously happening around the
person observing. The reality: statistics have never had much success in
convincing someone who believes something and receives sufficient evidence
to support their confirmation bias.

= The claim: the Lab is government-funded. The reality: the bona fides and
independence of the LBNL are top-notch and questioning them indicates the
rhetorical or intellectual disposition of the questioner.



= The claim: the study excluded 34 statistical cutliers. The reality: statistical
studies of any size do this to eliminate unrepresentative data and 34
exclusions on a sample size of 7,500 is miniscule. This study is accurate and
has not been manipulated.

The next study is the 2007 study by the Royal Institute of Chartered Surveyors
(RICS) in conjunction with Oxfords Brookes University. These are serious,
respectable and trusted institutes as well; RICS traces its history to chartering in
1792 and is a pre-eminent standards setting body world-wide. The researchers
assessed property transactions within five miles (8 kilometers) of three wind farms
from 2000 to 2007. This provides geographical, distance and time-frame
perspectives. They eliminated transactions where significant other factors would
impact prices: a large open cast slate mine, very expensive properties, very cheap
properties and sea view properties. This was to provide a clear view of specifically
wind turbines’ impact on property values. This left them with 919 transactions,
which is statistically valid. Their findings:

Despite initial evidence that there was an effect, when they investigated more closely,
there were generally other factors which were more significant than the presence of a
wind farm. Insofar as there was any impact on prices, the results seem to show that it is
most noticeable for terraced and semi-detached houses, with there being a significant
impact on properties located within a mile of a wind farm. The effect seems much less
marked - if at all - for detached houses.

Regarding the terraced and semi-detached houses:

The view of the estate agents was that proximity to a wind farm simply was not an issue.
What they did say, though, was that the properties close to one of the wind farms - St Eval
— were, in fact, ex-Ministry of Defence properties, and so less desirable than similar
properties.

To paraphrase, while people blamed wind turbines for property value decreases,
other factors were much more significant, and detached homes, the dominant form
of real estate near wind farms showed no price impacts. Unfortunately, RICS has
removed this survey from their available publications on their website and appear
to not be standing by the results of their research.

The third major study worth assessing is the Renewable Energy Policy Project's
(REPP) 2003 study. While the oldest, it also assessed the largest pool of data prior
to 2013, more than 25,000 property transactions in the USA. They looked at every
home within 5 miles (8 kilometers) of ten greater than 10 MW wind developments
that came online between 1998 and 2001. They gathered sales data for the control
regions near the wind turbines but outside of the 5 mile (8 kilometer) boundary to
ensure that they could assess differences accurately. They gathered six years




worth of data covering the years leading up to and following the wind farms’ online
dates. It is worth noting that while this is by far the largest study with the least
statistical adjustment of data, the creator of the study, REPP, is an organization
whose public and stated goal is to accelerate the use of renewable energy. As such,
while the study design is arguably very good and sample size the largest, it is the
only one that might be possible-to discount due to source. What REPP found:

= For 8 of the 10 of the wind projects, property values increased faster inside
the five mile limit than outside of it over the six years.

= For 9 of the 10 wind projects, property values increased faster within the five
mile limit after the wind projects came online than they had before.

» For 9 of the 10 wind projects, property values increased faster within the five
mile limit after the wind projects came online than in the comparable
communities.

Not only did this massive study not find negative impacts on real estate values, it
found exactly the opposite: wind turbines have a slight positive impact on real estate
values.

A fourth study is also worthy of a closer look: “Wind Farm Proximity And
Property Values: A Pooled Hedonic Regresswn Analysis Of Property Values In
Central Illinois” by Jennifer L. Hinman in partial fulfilment of a Master in Applied
Economics with Illinois State University in 2010. Ms. Hinman’s study evaluated
3,851 residential property transactions from January 1, 2001 through December 1,
2009 from McLean and Ford Counties, lllinois around the 240-turbine, Twin Groves
wind farm (Phases | and 1) in eastern McLean County, lllinois, Ms. Hinman'’s study
found no correlation between a working wind farm and decreased property values,
in fact saw more rapid price increases nearer to the wind farm as was observed in
the REPP report. Her study most clearly.shows that there is a statistical correlation
between fears about a.-wind farm before it is erected, temporarily depressing
property values, and that this temporary dip is rapidly eliminated once the wind
farm is in operation.

A University of New Hampshire study published in December 2012 assessed
another 4,600 property transactions and found: .
While this study does not exclude the possibility of isolated cases of property value impacts
attributable to the Lempster Wind Power Project, this study has found no evidence that
the Project has had a consistent, statistically-significant impact on property values within
the Lempster region. This is consistent with the near unanimous findings of other
studies—based their analysis on arms-length property sales transactions—that have
found no conclusive evidence of wide spread, statistically significant changes in property
values resulting from wind power projects.

Two correlation graphs from this study paint a clear picture.



Note that distances are in kilometres.

Basically, there’s no variance on home prices due to distance from wind turbines,
and a huge correlation to size of dwellings.

A preliminary Australian study indicates that this is also true south of the
equator. While the sample size of sales transactions is low, they found that 40 of 45
sales transactions had no evident reduction in value in close proximity to wind
farms and that properties that were in sight of wind farms found no reduction in
value.

What is the evidence that shows negative impacts?
There is a statistically valid, methodologically sound, peer-reviewed study which
contradicts the preponderance of evidence above, and is worth detailed .
assessment as a result. Martin Heintzelman and Carrie Tuttle did a study of 11,331
property transactions over @ years in three counties in Northern New York, 461 of
which were within three miles of wind turbines. They found that two of the three
counties had significant property value decreases while the third had positive
indicators. For context, this study is relatively equivalent in terms of organizational
respect and depth to Ms. Hinman's study from lllinois State University; credible but
not from a world-class organization such as the Berkeley Lab or RICS. A significant
failing of the study that makes it difficult to trust compared to other studies is the
short time frame of the data for the two counties with negative impacts. Their wind
farms became operational in 2008 and 2009, basically in the last year of the data
set. The county with positive impacts went live in 2006, in the middle of the data
set, providing a much richer analysis space. There are several other significant
differences between the two counties that showed negative results and the county
with positive results as well.

= The two counties with negative impacts (Franklin and Clinton}) had

significantly fewer transactions — 210 between them — than the county with
some positive impacts (Lewis) which had 251 transactions by itself.




» The two counties with negative impacts had significantly higher resales of
properties than the county with positive impacts, 75 to 65.

= The two counties with negative impacts are adjoining to one another with the
third county two hours drive away, effectively in another community
conversation region and making it possible for other local impacts to be
masked; three completely separate or three completely co-located regions
would have eliminated this oddity.

» The two counties with negative impacts had fewer wind turbines on average
than the county with positive impacts (221 between them to 194 in Lewis).

This region also has a robust set of anti-wind activist groups. The 2011 anti-wind
documentary, Windfall , is from upstate New York, and Lisa Linowes, a long.term
anti-wind advocate with ties to astroturf-supporters such as the Heartland Institute
and the Koch brothers was the sole technical advisor to the movie and has been
active in the area. Despite the largest county with the longest history of wind
energy and the most transactions having positive indicators for property values, the
authors focused their conclusions dominantly on the negative counties. The
authors state in their initial preambile, since revised, that they did not believe it
possible that wind turbines didn't negatively affect property values. They found the
results they expected, ignoring the significant oddities in their results. This study
can only be considered of moderate reliability due to the challenges.

A German study is also worth assessing briefly. It covers 1,405 transactions near a
* wind farm of nine wind turbines in Germany. It found lower property values near
wind farms, regardless of whether the wind turbines could be seen or not. It’is
weak as it does not have control values from other areas, does not assess other
potential causes of hedonic impact and has a limited transaction base. At best it is
an interesting outlier from the preponderance of evidence of only moderate
reliability.

There are four anecdotal sets of property value appraisals by property value
appraisers — McCann, Gardner, Lansirik and Reardon — in Canada, the USA and
Australia that are often mentioned. They variously use case studies, paired sales
analysis and an apparently invented statistical method in one case. They cover a
few dozen property transactions at most with little in the way of methodological
rigor or coritrol. They all show strong evidence of pre-existing bias in their
statements. Given the tiny sample sizes and poor methodological rigor, they cannot
be considered reliable as evidence. One Australian report by a property appraiser,
Peter Reardon, follows in the footsteps of weak anecdotal assessments in Canada
and the USA, looking at three sales near wind farms and pairing them with
properties elsewhere. It has the typical weaknesses of poor methodology and rigor,
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but a statement from a purchaser of one of the two properties which apparently
suffered property value impacts came into my hands via a correspondent. It's worth
looking at what they say about the property that they purchased. Netting it out, it
was grossly overpriced for reasons having nothing to do with the nearby wind farm,

and everything to do with the property itself.

As you know the property had been on the market since September 2010 at no time did we
see it advertised at $320,000. We spoke to the agent when it was priced at $299,000 which
we thought was grossly over valued even for a lifestyle block let alone a grazing block,
having as you stated not only one but two 330KV lines transversing the block along with
the associated easement restrictions (some 50 double sided pages of conditions and and
terms), it is divided by the duel carriage Hume Highway and two truck parking bays
(North & South), with the associated noise and litter problems, it has no 240V power
access on the block (and we know what that costs). That’s the lifestyle detractions of the
block. Now Grazing- the block has over 30% water logging and drainage problems,
covering both sides of the highway-in fact many times we saw the agents vehicle parked
on the edge of the road- presumably inspections by “foot” The block had poor boundary
fencing on the southern side, the carrying capacity of the block is app. 2.5 DSE per Ha. We
therefore came to the value of $205,000 (2500 per Ha.) This was allowing some $8000 for
“proximity” to the Highway- having purchased her brother’s property some 12 months
before at app. $2400Ha.(carrying capacity of6 DSE per Ha.) (no agent involved in this
transaction! ) We had to increase this offer by some $20,000 to secure this deal. I think
Real Estate Agents are no different in the country to their city cousins- raising unrealistic
expectations of the value of property especially in a difficult market. It would seem that
people want sub-division prices for undeveloped land, not allowing for development and
approval costs. Having also sold the mentioned 80Ha block on the Collector Rd we know
the demands of financing lifestyle blocks in recent years. This block does have 240V power
available as per Council Sub-division regulation.

Summary

The anecdotes about property value loss represent real people telling the truth as
they see it, which is to say, from a limited perspective in both space and time. What
they are observing is accurate - lower sales prices than they expected - but their
interpretation of the reasons appears to be flawed. However, decisions on policy
and legislation must be made on the most robust evidence. The evidence related to
property value and wind farms is clear: the only impact that wind farms have is that
host properties are worth more after the wind turbines are installed. Nearby
properties are unaffected.
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WIND TURBINES AND HEALTH

INTRODUCTION

Wind produced electricity has made an extraordinary expansion. In just
over 20 years, global wind electricity generating capacity has increased
almost 100 fold (6,100 megawatts (MWs) in 1996; 539,123 MW in 2017).

While Asia, Europe, and North America all contain countries that lead in
wind-produced electricity (China, Germany, U.S)), just 10 countries are
responsible for more than 80 percent of all production.? Specific states
within the United States are responsible for the majority of production.
lowa has 10 times the capacity of neighboring Wisconsin' and five times
the capacity of better wind-resourced Nebraska.®

Internationally and within the United States, the availability of renewable
resources (e.g., wind, solar, hydro, geothermal), the cost of renewables
compared to traditional generating sources, and government policy
drive the amount of renewable electricity produced. Citizen support
also impacts the development of renewable energy and such support is

influenced by public perceptions about the benefits and risks related to wind power, the largest source of
new renewable electricity in the U.S.

This joint statement from the Environmental Health Sciences Research Center at the University of lowa
College of Public Health, lowa Policy Project, and the lowa Environmental Council summarizes the results
of the best research available and concludes that there is little scientific evidence that sound from wind
turbines represents a risk to human health among neighboring residents.

'HOW TO RESEARCH HEALTH EFFECTS

Any new technology often must answer to the various effects its expansion may have on both
economics and health. Frequently human and environmental health are treated as external to the
economics of decisions regarding power generation. This leads to a discounting of the health impacts
of fossil-fuel-based power generation that cause a substantial burden to citizens. Science can answer
questions about potential harm from emerging technologies and thus help policy makers make sound
decisions. Most will agree that economic progress should not introduce health problems to an area.

To find if problems exist with wind electricity production, well-constructed scientific studies, rather than
local conversations, should be our guide.

I Wisconsin in 2017 had 746 MW of wind power capacity while lowa had 7,312 MW.
Wind energy produced 37 percent of lowa’s electricity, while in Wisconsin the amount was just 2.3 percent.
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WIND TURBINES AND HEALTH

A basic concept from the science of public health requires that a human
health risk be a true hazard and that there is exposure to that hazard.
As an example, working on a ladder can be hazardous, but first one
must climb the ladder. Wind turbines produce sound pressure, but if
the frequency is at or below the threshold of human perception and

the sound pressure level is low at area residences, there is little or no
exposure to cause human health problems. -

There have been a modest number of studies of wind turbines and
health — some published in peer-reviewed scientific journals with strong
reputations, others found on websites or published with no expert
review. The source, extent of peer review, and scientific quality must
determine the weight scientists and policy makers give to any study.

REPUTABLE REVIEWS OF WIND
TURBINE EXPOSURES AND
HAZARD POTENTIAL

Two authoritative peer-reviewed, critical reviews have been done on the topic of wind turbines

and health." Perhaps the most thorough review on the subject was published in 2015 by the

Council of Canadian Academies. That organization “is an independent, not-for-profit organization

that supports independent, science-based, authoritative expert assessments to inform public policy
development in Canada.™ The Council review summarized here was written by an expert panel of nine
university professors and an engineering firm CEO and was extensively peer reviewed.

The expert panel started by looking at a wide range of relevant peer-reviewed journal articles, web
pages, legal decisions, and the grey literature (non-peer-reviewed publications such as websites) on
wind turbine health effects. They compiled a list of 32 symptoms and health conditions referenced in this
literature and found that the health effects most commonly blamed on turbine sound include: annoyance,
sleep disturbance, and stress-related conditions.® The authors used this list as a starting point to assess
whether there are any causal links between exposure to wind turbine noise and health impacts.

Next, they reviewed the available literature to evaluate the claims.

it Critical review articles are articles written by content experts to evaluate the state of the science and weigh the evidence regarding a particular hazard.
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WIND TURBINES AND HEALTH

The expert panel’s evaluation of the scientific evidence regarding various complaints led to the
following overall conclusions:

- Current evidence is sufficient to establish a causal relationship between a person’s exposure
to wind turbine noise and feelings of annoyance.'

- Current evidence is limited for a causal relationship between exposure to wind turbine noise
and sleep disturbance.”

+ Current evidence is inadequate to determine whether there is a link between exposure
to wind turbine noise and stress or other health outcomes.’

+ There is evidence of no causal relationship between hearing loss and exposure to noise at
any distance at the sound pressure levels that are associated with wind turbines.¥

While the expert panel found sufficient evidence the wind turbines can cause annoyance, they also

noted that current evidence is not sufficient to establish whether the level of annoyance is related to the
visual impact of the turbines or other factors such as personal attitudes. Studies completed so far do not
measure noise independently from these factors. There is also a lack of data about baseline levels of
annoyance without the turbines, the size of the annoyance effect, and how the impact changes in different
wind and weather conditions.®

There is also a question in the scientific literature about the magnitude of citizen concern and about how
that compares to energy production from alternative sources. According to one of the papers evaluated
by the expert panel, noise complaints between the years 2007 and 2011 in the Province of Alberta were
fewer than complaints about other energy activities such as oil and gas operations.’

The second critical review, published in 2014, is by Robert J. McCunney, a professor at the Massachusetts
Institute of Technology (MIT) and several others.® The authors state that their work received funding from
the Canadian Wind Energy Association but that the funder “did not take part in editorial decisions or
reviews of the manuscript.” MIT conducted an independent review of the work and determined there was
academic independence and the work was without bias.

This review found no evidence that people residing close to wind turbines experience disease outcomes
but did find that some people experienced annoyance with the turbines or turbine noise, similar to the

i

*Sufficient” evidence of a causal relationship means that a relationship was found and that chance, bias, and confounding factors can be ruled out with

reasanable confidence.

iv “Limited” evidence of a causal relationship means a causal association was considered by the Panel to be plausible, but that chance, bias, and
confounding factors could not be ruled out with reasonable confidence.

v “Inadequate” evidence of & causal relationship means that the available studies lack the quality, consistency, or statistical power to lead to a conclusion
about whether a causal relationship exists.

vi “Evidence of no causal relationship” means that several adequate studies covering the full range of exposure consistently show no association

between exposure and effect at any level of exposure.
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WIND TURBINES AND HEALTH

nocebo

_ , , . [noh-see-boh]
findings in the Council of Canadian Academies review. However, this

review also found that the percent of participants expressing annoyance noun

: h ! 5 P _
varied across the studies they reviewed A detrimental effect

CONFOUNDING FACTORS onedl) podicen
When people experience symptoms of compromised health, yet there
is not enough evidence to find more than annoyance and no other
health effects, it is reasonable to look for other explanations, including
confounding factors. Confounding factors are things that can “muddy” expectations of treatment
the results of otherwise well-designed scientific studies. One such or prognosis.

factor is the “nocebo effect.” Related to the similar-sounding placebo
effect, the nocebo effect comes into play, in this case, when people are
predisposed to believe they will experience health consequences from

by psychological or
psychosomatic factors
such as negative

wind turbines coming to their area.

Nocebo effects were investigated in both the reputable reviews used in our research. Both the McCunney
review and the report of the Council of Canadian Academies cite a paper by Fiona Crichton and
colleagues (2014) in the physiology literature.’® Crichton and her team did not work in the field measuring
noise levels but used students to replicate the experience of people living near wind farms. The study
looked at infrasound, which is “sub-audible,” or produced in a frequency range below what can be heard
by humans. Proponents of negative health effects from wind turbines have often pointed to this
sub-audible sound as causing problems.

The study divided 54 university students into two groups who attended a session at the listening room of
the Acoustic Research Center at the University of Auckland, NZ. One group was exposed to sub-audible
infrasound for 10 minutes. The other group was exposed to silence. All participants then viewed one of
two short videos, one describing dangers of infrasound and the other describing benefits of wind power
and the lack of health problems. A second 10-minute listening session followed. Those who had seen

the provocative video, taken from material readily found on the internet, found that their symptoms and
the severity of those symptoms increased, whether or not they were actually subjected to sub-audible
infrasound. The conclusion of the Crichton paper should be a suggestion to policy makers deciding on
the location of wind farms.

¥ symptom expectations are at the heart of symptom expression, current
proposals to address health concerns, such as increasing minimum set
back distances for wind turbines from residences, may do little to alleviate
health complaints and related opposition to wind farm development.™ 17
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WIND TURBINES AND HEALTH

The Crichton paper led to another by Renzo Tonin and others in Australia 2016.” This study was
designed to replicate that of Crichton et al. The size of the study was increased to 72 participants.

The study first subjected volunteers to one of two films, the first designed to heighten the perception that
infrasound is harmful and the second to reduce this perception. They then asked volunteers to listen to
acoustic headphones that were either producing real infrasound or no sound at all. For those subjected
to infrasound, the sound pressure level and waveform were set to simulate “an environment allegedly
causing residents to have experienced severe adverse health effects.”” The investigators found that
volunteers who viewed the film designed to heighten the perception that infrasound is harmful generally
reported more symptoms and higher intensity of symptoms than those who viewed the film designed

to reduce this perception, regardless of whether or not they had actually been exposed to infrasound.
Investigators believe that this supports the hypothesis of a nocebo effect and that perception, and no
direct physical effect, may influence reported symptoms.

The McCunney review shows economic benefit, or lack of benefit, is another confounding factor for the
presence or absence of annoyance. The review found evidence that residents who receive compensation
for living near wind turbines are less likely to report adverse health effects than those who live nearby but
do not receive economic benefit. Another of the studies notes that receiving benefit is a personal choice
and consequently a matter of control over one’s environment.

One of the reviewers of our statement reminded us of a well-known study by Paul Slovic about how
people estimate hazard and risk.” If people believe that they are not in control of a technology, that it is
applied without their consent, and that potential risks are not shared equitably, they might perceive the
technology as more of a danger. Slovic categorizes these as “dread factors.” This may help explain the
gap in reported impacts between people who are compensated for turbine siting and those who are not.

In addition, if a technology is not fully understood by laypersons or if potential effects are invisible to
human perception, a person’s estimate of the hazard may also be elevated. This is termed the “unknown
factor.” Technologies that combine both factors, like a wind development, may be seen as more risky and
tend to draw opposition from neighbors.

To the extent that these perception factors are at work, increasing the distance of wind farms from
residences might do little to reduce annoyance. However, finding ways for residents to have more control
over exact location of individual turbines or be compensated for the loss of their former viewscape might
have an effect.

The literature on these confounders helps explain the conclusion of an earlier reportina U.S.
environmental journal in 2011."%

v lowa

# /. Environniental
Coungcil




WIND TURBINES AND HEALTH

; ¢To date, no peer reviewed scientific journal articles demonstrate a

' causal link between people living in proximity to modern wind turbines,
the noise (audible, low frequency noise, or infrasound) they emit and
resulting physiological health effects ... 7

The authors further concluded, “Given that annoyance appears to be more strongly related to visual cues
and attitude than to noise itself, self-reported health effects of people living near wind turbines are more

likely attributed to physical manifestation from an annoyed state than from infrasound. This hypothesis is

supported by the peer-reviewed literature pertaining to environmental stressors and health.” '

CONCLUSION

There is no authoritative evidence that sound from wind turbines represents a risk to human health
among neighboring residents. The only causal link that can be identified is that wind turbines may

pose an annoyance to some who live near them. However, annoyance is likely influenced by a person’s
feelings about the impacts of wind turbines on viewsheds, whether they get an economic benefit from the
turbines, whether they have had a say in the siting process, and attitudes about wind power generally.

Given the evidence and confounding factors, and the well-documented negative health and
environmental impacts of power produced with fossil fuels, we conclude that development of electricity
from wind is a benefit to the environment. We have not seen evidence that wind turbines pose a threat to
neighbors. We conclude that wind energy should result in a net positive benefit to human health.
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WIND TURBINES AND HEALTH

GLOSSARY

Nocebo — a detrimental effect on health produced by psychological or psychosomatic factors such as
negative expectations of treatment or prognosis.

Confounding Factor — A confounding factor in a study is a variable which ié related to one or more of the
variables defined in a study. A confounding factor may mask an actual association or falsely demonstrate
an apparent association between the study variables where no real association between them exists. If
confounding factors are not measured and considered, bias may result in the conclusion of the study.

Critical Review — Critical review articles are articles written by content experts to evaluate the state of
the science and weigh the evidence regarding a particular hazard.

Viewshed — the view of an area from a specific vantage point.
Causal — relating to or acting as a cause.

Infrasound — sound waves with frequencies below the lower limit of human audibility.

Global Wind Energy Council. Global statistics 2017, http://gwec.net/alobal-figures/graphs/.

2 |bid.

3 American Wind Energy Association. Wind Capacity by State. 2017. https://www.awea.org/wind-101/basics-of-wind-energy/wind-facts-at-a-glance/.

4 Council of Canadian Academies, 2015. Understanding the Evidence: Wind Turbine Noise. Ottawa (ON): The Expert Panel on Wind Turbine Noise and
Human Health, Council of Canadian Academies.

5 |bid. Page 52.

6 Ibid. Page 74.

7 Ibid. Page 59.

8 McCunney, RJ, Mundt, KA, Colby, WD, Dobie, R, Kaliski, K and Blais, M. Wind Turbines and Health: A Criticol Review of the Scientific Literature.

JOEM Vol 56, Number 11, November 2014,

2 Ibid. Page 125. Referencing Thibauit, B., Angen, E., & Weis, T. (2013). Survey of Complaints Received by Relevant Authorities Regarding Operating Wind
Energy in Alberta. Calgary (AB): The Pembina Institute.

10 Crichton, Fiona et al. Can Expectations Produce Symptoms from Infrasound Associated with Wind Turbines? Health Psychology 2014, Vol. 33,
No. 4, 360-364.

1 Ibid. Page 364.

12 Tonin, Renzo; Brett, James; Colagiuri, Ben. The effect of infrasound and negative expectations to adverse pathological symptoms from wind farms,
Journal of Low Frequency Noise, Vibration and Active Control 2016, Vol. 35(1) 77-90 (2016).

13 Ibid. Page 79.
4 Slavic, Paul. “Perception of Risk.” Science, vol. 236, no. 4799, 1987, pp. 280-285. JSTOR, www jstor.org/stable/1698637.
15 Knopper, LD and Olison, AC. Health effects and wind turbines: A review of the literature. Environmentol Health 201110:78.

https://fehjournal.biomedcentral.com/track/pdf/10.1186/1476-069X-10-78.
16 |bid. Page 8 of 10.
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ARTICLE INFO ABSTRACT

Keywords: The moving shadows caused by wind turbines, referred to as “shadow flicker” (“SF”), are known to generate
Wind turbine annoyance in a subset of the exposed population. However, the relationship between the level of modeled SF
Shadow flicker exposure and the population's perceived SF and SF annoyance is poorly understood. Improved understanding of
:‘L’::]:’[ZTCZ SF exposure impacts could provide a basis for exposure thresholds and, in turn, potentially improve community

acceptance of and experience with wind power projects.

This study modeled SF exposure at nearly 35,000 residences across 61 wind projects in the United States, 747
of which were also survey respondents. Using these results, we analyzed the factors that led to perceived SF and
self-reported SF annoyance. We found that perceived SF is primarily an objective response to SF exposure,
distance to the closest turbine, and whether the respondent moved in after the wind project was built.
Conversely, SF annoyance was not significantly correlated with SF exposure. Rather, SF annoyance is primarily a
subjective response to wind turbine aesthetics, annoyance to other anthropogenic sounds, level of education, and
age of the respondent.

We also examined regulations governing SF in the sample project areas and compared them to SF exposure in
the surrounding population. Additionally, we found that noise limits could serve as a proxy for SF exposure, as
90% of those exposed to wind turbine sound of no more than 45 dBA L, had SF exposure of less than 8 h per year
(a prototypical EU regulatory thresheld).

Social impacts

1. Introduction identified by community members living near existing wind projects.
These annoyances affect individuals living near existing wind projects
and raise questions of distributive fairness. Concerns about these im-
pacts also influence a local community's attitudes toward newly pro-

posed wind projects [6]—affecting wind project permitting timelines

1.1. Background

Targets to decarbonize the US electricity sector rely on increasing the

installed capacity of wind energy in the United States from approxi-
mately 110 gigawatts (GW) today [1] to nearly 600 GW by 2035 [2].
Many European countries have similarly ambitious goals [3,4]. Meeting
these targets could necessitate thousands of new wind projects and,
therefore, many willing host communities. Several common annoy-
ances—such as opaque planning and approval processes, and sound,
visual/aesthetic, and shadow flicker (S8F) impacts [5]—have been

and outcomes. To balance these competing goals, some communities
have opted to enact highly restrictive siting ordinances or moratoria on
wind projects until such concerns and impacts are better understood (e.
g., recent US examples from Kansas [7] and Indiana [8]). While overly
restrictive wind energy siting ordinances have been shown to increase
electricity costs and emissions [9], ignoring social impacts could also
result in negative societal outcomes.

Abbreviations: AIC, Akaike Information Criterion; CI, Confidence Interval; dBA, Sound pressure level in A-weighted decibels; GW, Gigawatt; Ly, One-
hour equivalent continuous sound level; LBNL, Lawrence Berkeley National Laboratory; MRLC, Multi-Resolution Land Characteristics; MW, Megawatt;
NOAA, National Oceanic and Atmospheric Administration; OR, Odds Ratio; RPM, Rotations Per Minute; SF, Shadow Flicker; VIF, Variance Inflation Factor;
WETO, Wind Energy Technologies Office; WSD, Weighted Shadow Duration; WT, Wind Turbine.
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Careful analyses of the sound impact from turbines have been con-
ducted by multiple parties (e.g., in the United States [10], Canada [11],
Europe [12], and Japan [13]). Similarly, the visual impact of wind
projects has been widely researched [14-18], as have attitudes toward
and annoyances from wind project planning processes [6,19,20].

Rarely, however, have perceived SF, exposure, or annoyance levels
been the focus of rigorous research. Perhaps as a result of this research
void, regulations around SF in the United States and in Europe are
variable and unstandardized—if they exist at all. A better understanding
of the magnitude, drivers, and potential mitigation strategies of SF
annoyance is needed for the wind industry, policymakers, and potential
host communities to better understand this concern and be able to
properly regulate it, if desired.

1.1.1. What is shadow flicker?

Shadow flicker, or SF, is an effect of pulsating light and shadow
caused by the sun shining through rotating wind turbine blades. The
intensity of SF diminishes with increasing distance from a wind turbine,
which means it is typically most noticeable near the wind turbine. The
area where SF occurs is largest when the sun is relatively close to the
horizon, thus it is most common in the morning and evening hours to the
west and east of the turbine, respectively. Similarly, the area of impact is
typically larger at higher latitudes, where the sun spends more time at
lower angles from the horizon (i.e., at large solar zenith angles). SF is
expressed as either the maximum number of hours/year or minutes/day.
It is modeled either assuming the “worst case” (e.g., turbines always
operating, no intervening clouds), or what is termed “real case” that
considers mitigating factors related to meteorology and project opera-
tion. A detailed discussion of these models and methods is provided in
Section 2.1.3.

1.1.2. What is annoyance?

Lindvall et al. [21] define annoyance as “a feeling of displeasure
associated with any agent or condition believed to affect adversely an
individual or group.” Lindvall et al. recognize that feelings of annoyance
are not necessarily pathogenic and may or may not result in negative
health consequences. Hiibner et al. [22] go further to define “annoyance
stress” by evaluating self-reported annoyance in the presence of addi-
tional stress indicators such as sleep disturbance, irritability, and coping
responses. As such, there is a distinction between self-reported annoy-
ance and annoyance stress, in that the former could be considered an
attitude while the latter may lead to health impacts. In this study, we
focus on self-reported annoyance on a five-point scale, with the highest
annoyance category being “very annoyed.” This is distinct from the
highest category of annoyance stress of “strongly annoyed” [22].

1.1.3. Wind neighbor survey background

Lawrence Berkeley National Laboratory's National Survey of Atti-
tudes of Wind Power Project Neighbors (“LBNL Neighbor Survey”) was
conducted by many of the same authors as this paper [6,10,22,23]. This
survey collected data in 2016.

Hiibner et al. [22] demonstrated that self-reported annoyance to SF,
although lower than that of turbine noise, was similar to annoyance to
traffic and more prevalent than annoyance to agricultural machinery,
turbine lighting, or landscape changes.' From this same survey data, we
found that of those who could experience the effects, though, SF emoted
a high negative reaction. Twenty percent of the 1705 respondents
indicated they noticed SF on their property, and 7% reported being very
annoyed by it. However, of those that experienced SF in their residence,

! However, with respect to Annoyance Stress, 0.2% were strongly annoyed by
SF compared with 1.1% to noise, 1.2% to lighting, and 1.5% to landscape
change in the US sample.
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approximately one-third reported being very annoyed. Further, wind
project developers often rank SF as one of the top concerns of commu-
nities.” However, the role of SF in the experience of neighbors of wind
projects has not been well studied in the United States or abroad.

Statutorily, there is no US national SF regulation, and regulatory
limits on SF in states, counties, and towns vary or are often nonexistent
[24,25]. Several countries have guidelines or standards, most of which
use the same thresholds as or reference the German national guidelines
for the evaluation of SF [24,26] (as will be discussed in Section 1.3 and
Section 3.4.2). However, there are currently no international standards
for how to model SF exposure levels around turbines.

To examine how SF exposure affects perception and annoyance, we
conducted a mixed-methodology (both quantitative and qualitative)
study using surveys of people living around US wind turbines and
combined this data with SF modeling. We modeled SF for 61 unique
wind projects across 17 states and 50 counties. These sites included
approximately 750 survey respondents and more than 34,000 additional
homes (non-survey respondents) from the surrounding population
within 2 km of a wind turbine, making this the largest SF dataset
analyzed for perceived SF and annoyance that we are aware of. From
respondents, we collected survey data on whether they perceived SF in
their home and the degree to which they were annoyed by it. We also
collected a suite of demographic characteristics and attitudes toward the
nearby project.

1.2. Research objectives

The present analyses of modeled SF exposure and survey-reported
annoyance were intended to investigate the following research
objectives:

1. Quantify SF exposure across a large and geographically diverse
sample of residences to develop a general understanding of SF
experienced in populations living near wind turbines.

2. Use a mixed-method approach to examine the correlation between
modeled SF exposure and individuals' reported levels of perceived SF
and annoyance to help inform regulations in the United States and
abroad.

3. Create a model to predict individual perceived SF and SF annoyance
to better understand the magnitude, drivers, and potential mitigation
strategies for SF impacts.

1.3. Previous shadow flicker research

As early as 1984, SF from turbines was recognized for its potential to
be an adverse community impact. Verkuijlen and Westra [27] found that
to avoid nuisance, the SF frequency should remain below 2.5 Hertz (Hz)
(50 rotations per minute [RPM] for a three-bladed wind turbine). These
conclusions were primarily based on previous research related to the
onset of epileptic, nausea, and dizziness symptoms [28]. However, the
authors conceded that the prior literature was not specific to wind tur-
bines, and that further study was needed. In a later study specific to wind
turbines, Harding et al. confirmed that to protect against epileptic im-
pacts, wind turbines should not exceed 60 RPM [28]. For context,
modern utility-scale wind turbines rotate at less than one-third of this
rate; the fleetwide simple average for US turbines from 1998 to 2019 is
17.4 RPM.”

In 1999, Pohl et al. [29] conducted a survey of 223 residents in Ger-
many who lived around wind projects, to determine the impacts of SF and
to examine whether the proposed regional SF limit was reasonable with
respect to impacts. They found that SF exposure alone did not explain SF

? Collected via conversations with various developers.
3 Derived from an internal Lawrence Berkeley National Laboratory database
(not capacity weighted).
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annoyance. However, when adding in weighing to account for SF sensi-
tivity of different types of rooms and SF exposure of those rooms in in-
dividual homes, they found a clear linear relationship between this
weighted shadow duration and SF annoyance. They also found that
certain residents with high levels of exposure “spent less time in the
shaded living spaces and in open spaces around the house and felt...ac-
tivities indoors and outdoors as well as in their leisure time were severely
disturbed as compared to people who were not exposed to shadows”
(translation). They concluded that the proposed limit of 30 h of SF per
year was likely to prevent most cases of substantially annoyed in-
dividuals. The hours estimate was based on a model of purely astro-
nomical shading duration (“worst case™), which gives an upper limit to
the duration of periodic shading to which a dwelling is exposed. This
model can then be adjusted down by meteorological and turbine opera-
tion corrections to mimic actual operating conditions (“real case”). Ger-
many later adopted the 30 h/year (and 30 min/day) worst case and an 8
h/year real case limits for its guidelines for wind projects [26].

Koppen et al. summarized US and EU SF standards in 2017 and found
that when SF limits existed, the 30 h/year (and 30 min/day) limit was
consistently applied [24]. Many of these in the EU were expressed as a
worst case. They observed real case limits in some jurisdictions as well (e.
g., Germany, Australia, Belgium, Denmark, and Sweden), with maximums
of either 8 or 10 h/year (and 8 to 10 min/day). This suggests a worst-to-
real-case relationship of roughly 3 to 1 and a rough equivalent between
hours/year and maximum minutes/day. The metric in the three US ex-
amples cited did not differentiate between real or worst-case metrics.

In one of the largest and most comprehensive studies of its kind to
date, Health Canada surveyed 1,238 people living between 0.25 km and
11.22 km from existing wind turbines in two Canadian provinces [30].
Among other important findings, the researchers found that SF expo-
sure, expressed in maximum minutes per day, improved the ability to
estimate high annoyance from wind turbines when combined with other
factors such as noise, concern with physical safety, and noise sensitivity.
For the lowest level of wind turbine SF exposure (0 to 10 min/day worst
case), 3.8% of the population was highly annoyed by SF, while of those
experiencing the highest level of exposure (>30 min/day worst case),
21.1% were highly annoyed by SF. However, when modeling SF without
additional observable and subjective variables, the predictive strength
of the model was weak (R? of 0.1). The authors concluded, “In addition
to addressing some of the aforementioned shortcomings, future research
may also benefit by considering variables that were not addressed in the
current study. These may include, but not be limited to, personality
traits, attitudes toward WTs [wind turbines], and the level of community
engagement between WT developers and the community.” This research
addresses some of these variables.

Frieberg et al. [31] conducted a systematic literature review on the
influence of wind turbine visibility, including indirect effects such as SF,
on health. They recommended that additional high-quality research be
conducted on the subject, including, “the combined impact of visual and
audible aspects of wind turbines on residents' health, and the complex
interdependency with other variables (e.g., attitude toward wind en-
ergy, economic benefit) should be taken into consideration.” This
research attempts to address some of these areas of study.

2. Data and methods
2.1. Data

A wide range of data were collected and generated for this research
effort. The following sections describe these data in additional detail.
One of the key variables was modeled duration of SF exposure at each
home (Section 2.1.3). The inputs for those models included the
following:

« Wind turbine and project data (Section 2.1.1).
s Residence (i.e., receiver) locations (Section 2.1.2).
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» Topography and land cover (Section 2.1.3).
¢ Meteorology, including wind speed, wind direction, and cloud cover
(Section 2.1.3).

Those modeled SF data were, in turn, key inputs to both the
perceived SF and SF annoyance models (Section 2.2.2). The models
required survey response data such as demographics, self-reported
perceived SF and SF annoyance levels, and other response data (Sec-
tion 2.1.4). Finally, we collected data on SF ordinances (whether they
existed, and if so, the relevant limit) for all 50 counties represented in
our analysis (Section 2.1.5).

2.1.1. Wind turbine and project data

The 61 wind projects used for modeling encompassed 2,982 wind
turbines spread across 17 US states and 50 counties (Fig. 1). Data on
each of these wind turbines were obtained from the US Wind Turbine
Database (USWTDB) [1,32]. These data included turbine location (i.e.,
latitude/longitude), rated capacity, hub height, rotor diameter, manu-
facturer, model, total height, total project capacity, and number of
turbines in the project. Table 1 shows summary statistics on the wind
turbines.

Additional turbine data that are not available from the
USWTDB—such as power curves for operational profiles—were applied
from data built into the SF modeling software described in Section 2.1.3.

The wind projects included in this analysis ranged from a 1.5-mega-
watt (MW) wind project with a single wind turbine to a 515 MW project
with 222 turbines. The median project capacity and number of turbines
were 180 MW and 87, respectively.

2.1.2, Receiver (residence) data

The residence location data were obtained from CoreLogic.” Data
comprised all single-family homes, condominiums, duplexes, and
apartments with complete addresses located within 2 km of one of the 61
wind projects. Initially, this yielded a sample of 46,175 receivers (i.e.,
residences).

A variety of quality control measures were used to verify the receiver
location data, including removing duplicate location records, validating
via an alternative source of location data, and visually inspecting using
aerial imagery.” Of the total sample, we found 34,117 unique locations
and 12,058 duplicates. Some of these duplicates were multi-family
housing units, but most were determined to be inaccurately geocoded
and grouped into centroids of subdivisions or blocks. The duplicated
locations were evaluated for geospatial accuracy. We visually examined
all locations with >100 receivers using satellite imagery (n = 9), as well
as a random sample of 25 additional duplicate sites, and the 100 loca-
tions with the highest modeled SF using satellite imagery. We matched
each receiver location to the nearest “building” location from Microsoft's
open-source building footprint data [33], flagging any locations found
to be more than 40 m from the nearest structure. If the flagged location
was a survey receptor, it was visually inspected with satellite imagery
and then relocated (n = 157). The remaining (non-survey respondent)
receiver locations were removed from the analysis. We additionally
removed excess duplicate receivers for locations with 10 or more records
(keeping any survey respondents, if applicable). This process resulted in
a final set of 34,940 receivers, which included the 747 survey
respondents.

2.1.3. Modeled shadow flicker data
In this study, two aspects of SF were quantified—the annual number
of SF hours (and daily SF minutes) at each home and their distributions

4 See https://www.corelogic.com/find/property-data-solutions/ for more
info on their data products.

5 All survey respondents’ residence locations were manually verified with
aerial photography.
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Fig. 1. Map of wind projects used for SF analysis.
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Table 1

Descriptive statistics of all wind turbines included in the SF models (n = 2982
across 61 projects, not capacity weighted).

Metric Minimum  Median  Maximum  Mean Standard
deviation

Hub height (m) 70 80 100 85.3 8.5

Rotor diameter 77 83 117 89.3 10.1
(m)

Turbine capacity 1.5 1.65 2.5 1.8 0.3
(MW)

# of turbines in 1 87 222 48.9 52.1
praject

Project size L5 180 515 87.0 96.3
(MW)

by time of day and over the year. These were modeled using the
SHADOW module in windPRO Version 3.3.

Predicting SF at residences surrounding a wind project is achieved
through calculations of sun angles at different times of day and periods
of a year at a given latitude; this is done while accounting for turbines'
heights and intervening topography. This enables estimates of the
maximum cumulative number of hours in a year (or hours per day) that
a home will experience SF. SF can be modeled (and, for that matter,
regulated) in terms of “real” or “worst” case. Worst case modeling is the
astronomical maximum SF, assuming turbines are always operating (i.e.,
rotating) and there is no cloud cover. Real case modeling includes
meteorology (e.g., cloud cover [34]), turbine operational factors (e.g.,
downtime), wind speed and direction [35], and potentially land cover
[34], each of which can reduce worst-case levels. Real case modeling,
therefore, results in fewer hours of calculated SF, all else being equal. We
posit the real case model is a better approximation of actual conditions
experienced by wind project neighbors, and therefore it is the metric we
primarily use in the analysis.

The model outputs the periods of every SF event for each residence.
Using these data, we estimated other parameters like maximum number
of SF minutes in any day, as well as seasonality and time-of-day impacts.

The most SF occurs close to a wind turbine and (in the northern
hemisphere) primarily to the northeast and northwest of a turbine, and
to a lesser extent, to the north (Fig. 2A). When multiple turbines are
between the sun and a home, a combination of SF from those turbines is
possible (Fig. 2B). The farther one moves away from a turbine, the

greater the decrease in SF intensity. At 15 rotor diameters from a wind
turbine (roughly 1.3 km for the median turbine in this analysis) the SF
intensity is diffuse enough that little observable light flicker occurs.
Therefore, for this study, SF beyond that limit was not modeled.

Physical obstructions from structures and land cover such as trees or
other vegetation were not included in the SF models. Although these ob-
jects can significantly reduce SF at a shadow receiver, reliable high-
resolution data were not consistently available across the full set of
modeling areas. To test the potential model impacts of land cover, though,
six of the study's modeling areas—those which had survey respondent
shadow receivers receiving high amounts of annual SF hours—were
modeled again with the 30-m gridded 2011 National Land Cover [34]
included. Most receivers were unaffected: 94% of receivers with modeled
SF had the same annual SF hours for the land-cover and no-land-cover
scenarios. Because we found most receivers were unaffected by land
cover's inclusion, and because of the relatively coarse grid of obstructions,
we did not otherwise include the effect of land cover in this study.

2.1.4. Survey data

Survey data were obtained from the LBNL Neighbor Survey [20].
This survey asked respondents 50 questions about their experience
living in proximity to existing utility-scale wind energy projects. Details
on that survey's methods, including sample selection, the survey in-
strument, and multimodal (phone, mail, internet) data collection, are
reported at length elsewhere [6,10,22,23], and therefore are only briefly
discussed here.

The survey frame encompassed all US residences within 8 km of any
utility-scale wind turbine (>1.5 MW in nameplate capacity) constructed
through the end of 2015. This resulted in a population of 1.29 million
residences around 604 wind projects, comprising 29,848 individual tur-
bines. To ensure an adequate sample of residents most likely to experience
SF and other impacts, the sample was stratified and some oversampling
was conducted—most notably among residences closest to turbines (<1.6
km). Oversampling also occurred at 15 wind project sites (representing a
diversity of turbine models, geographies, project sizes, population den-
sities, and topographies) where sound modeling was initially planned,;
these sites also formed the basis for the present SF analysis. After data
collection, we selected 15 additional wind project sites for a total of 30
sites, that included 61 wind projects, which were used for the corre-
sponding sound modeling analysis [10] and this SF analysis.
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Fig. 2. Example of annual SF hours around (A) a single wind turbine and (B) a string of wind turbines.

Survey data collection occurred in 2016. Ultimately, a total of 1705
valid responses were received from residents living within 8 km of 250
US wind projects, with the majority (1121) of respondents living within
1.6 km of a turbine. For this study, SF exposure was modeled for a total
of 747 survey respondents living within 2 km of 61 wind projects.

The survey data provided basic demographic data (e.g., age, sex,
education level) and data about respondents' potential relationship with
the local wind project (e.g., whether they received compensation), and
self-reported data on perceived SF and level of SF annoyance.

For perceived SF, respondents were asked if “the blades of a wind
turbine ever cast a shadow on your property, outside your home?” An
affirmative answer to this question triggered the follow-up of “Do the
blades of a wind turbine ever cast a shadow in your home?” We use the
latter response as our dependent variable, for several reasons. First, SF is
regulated at homes. Second, a home is a single point rather than a large
area. Finally, most human exposure is in or around a home.

To determine SF annoyance, respondents were asked: “To what extent
do you feel annoyed by the following effects of the local wind project?”
Where “shadow flicker” was listed as an option, they could respond “Not at
all,” “Slightly,” “Somewhat,” “Moderately,” “Very,” or “Don't Know.”

2.1.5. Shadow flicker ordinance data

Wind energy siting ordinances were collected and reviewed for all 50
US counties represented in this analysis. From these ordinances, we
collected data on whether SF exposure was regulated, and if so, what the
SF limit was, what metric was used (i.e., real or worst case, hours per
year or minutes per day), and what location(s) the limit applied to (e.g.,
“non-participating dwelling”). These data were used to contextualize
our discussion around SF exposure.

2.2. Analysis methods

This section describes the analysis methods. We briefly discuss the
perceived SF and SF annoyance (dependent variable) response cate-
gories and the regression models used to validate and predict them with
a variety of covariates (i.e., controlling variables).

2.2.1. Dependent variable categories
Two dependent variables are considered in the regression model
analysis: perceived SF and SF annoyance.” These were created by

© For a survey respondent to be included in both models, their homes must
have had at least 1 min per year of worst case (astronomical) SF. In addition, for
the annoyance model, only those who reported observing SF in their home were
included.

combining responses from the survey (Section 2.1.4) and modeled
annual real-case SF exposure (Section 2.1.3) to represent a dose-
response relationship of perceived SF and SF annoyance. The response
groups for perceived SF include “no perceived SF in home” and
“perceived SF in home.” The former includes two survey response levels:
“no perceived SF” and “perceived SF on property but not in home.” For
SF annoyance, the respondents were categorized as “not,” “mildly,” or
“very” annoyed. “Mildly” annoyed includes the three survey response
levels: “slightly,” “somewhat,” and “moderately.”

2.2.2. Regression models

To examine the relationships between various covariates and the
dependent variable (perceived SF and SF annoyance, with perceived SF
[“PSF”] used in this example), we assume the following relationship:

PSF, = f(modeled SF, respondent characteristics, wind project characteristics)
1)

Specifically, we estimate the following basic logistic regression
model.”

PSF, = a+ f,(MSF) + Y Ba(Ri) + 3 (WP +&; (2

where:

PSF; represents perceived SF in the home for respondent I (binary
yes/no).

a is the constant or intercept across the full sample.

MSF; is the modeled ST for respondent i, (hours/year real case).

R; is a vector of characteristics for respondent i, including their age,
gender, if they attended college, and if they received compensation
from the wind project.

WP; is a vector of characteristics of the nearby wind project for
respondent i, including the size of the project, the distance the
nearest turbine was from the respondent, and if it was oversampled
for the survey or not.”

¢; is a random disturbance term for respondent L

7 R: A language and environment for statistical computing (Version 4.0.2)
was used for the statistical analysis herein. https://www.R-project.org/.

¥ The two categories of oversampling are dominant or discrete. The former
refers to under-sampling because the project was located in a high population
area, while the latter refers to oversampling because it was the focus of addi-
tional detailed analyses (like this study).
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Table 2
Regression model variable summary.
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Group Variable Model*  Data Sample mean or percentage** (SD) Description, including categories (where
s Survey Perceived SF SF annoyance spilicable)
sample model model
(n=717) (n = 328) (n = 283)
Dependent Perceived SF B, O, S C 65/31/4 44/56 16/84 No SF in home/SF in home/Unknown (where
variables applicable)
SF annoyance B,0,85 C 15/13/10/ 27/23/17/33 41/34/25 Not at all/Mildly/Very/Unknown or Other (where
62 applicable)
Stratification Distance bin B, 0O, 8 S 57/39/5 77/23 88/12 Distance from nearest turbine: 0-0.8 km/0.8-1.6
km/1.6 to 4.8 km"
Large project B,O,S B 61% 76% 78% <10 turbines (0), >10 turbines (1)
Controlling College B, O, S B 44% 41% 42% No college degree (0), College degree (1)
Female B, OS5 B 56% 56% 54% Not female (0), Female (1)
Age B 0,48 N 56 (14.9) 57.7 (15.2) 57.8 (13.7) Respondent age (years)
Relationship Project B,0,8 C 74/16/6/4 64/25/10 56,/30/13 Non-participant/Compensated (not host)/Host and
participation Compensated
Stimulus SF B,O,S N 6.1 (9.9) 11.1 (11.3) 13.0(12.1) Real-case SF hours per year
Turbine Rotor diameter 0,8 N 90.3 (8.7) 92 (8.8) 91.9 (8.5) Nearest turbine rotor diameter (meters)
Hub height 0,8 N 86.6 (9.2) 88.4 (9.5) 89.1 (9.5) Nearest turbine hub height (meters)
Tip speed 0,8 N 76.5 (6.5) 77.2 (6.7) 76.9 (6.8) Velocity of tip of wind turbine blade at rated RPM
(m/s)
Project age Q0,8 N 5.2 (1.7) 4.8 (1.3) 4.8 (1.3) Project age in years at time of survey (2016)"*
Individual Turbines in view 0,8 N 19.3 (39.4) 26.5 (42.8) 28.3 (42.3) Number of turbines in view from residence and
property
Move in after 0,8 B 20% 20% 15% No (0), Yes (1)
project
Personal Like look (visual) s C 12/24/60/3  11/29/60 10/34/56 Neutral/No/Yes/Unknown (where applicable)
General S N 0.55 (0.72) 0.47 (0.66) 0.45 (0.64) Average annoyance to typical community stressors
annoyance

* Models in which variables are included: “B” = Basic, “0" = Observable, “S” = Subjective,

T Data Types: “B" = Binary, “C" = Categorical, “N” = Numerical.

¥ Not all survey sample variables have 717 valid responses, but missing entries are de minimus to the means presented.
** Distribution (%) of each response category is provided for each categorical (“C”) variable, or percent “Yes” for binary variables. Standard deviation (“SD")

provided in parentheses following the mean, where applicable.

' Bolded values indicate the omitted reference level to which other categories are compared. Some categories are populated in one sample (e.g., survey) and not in
others (e.g., annoyance model), therefore percentages are only shown where applicable.

* Distance bin of 1.6 to 4.8 km not represented in the regression models.

" Newest project in sample was built in 2012, and thus minimum age is 4 years.
“Not at all annoyed” (0) to “Very annoyed" (4) by “Motor vehicle traffic, including cars and trucks,” “Street lights,” “Agricultural machinery,” and “Lawnmowers,

tt

snow or leaf blowers.”

The model is then repeated using SF annoyance (i.e., SFA;) as the
dependent variable. In either case, the vector of parameter estimates 1,
fa, and py are used to determine the odds ratio of each variable, calcu-
lated as e”. The odds ratio signifies that a one-unit change in a covariate
will lead to a decrease (values between 0 and <1) or an increase (values
> 1) in the likelihood that a respondent will move to the next response
level. For example, for perceived SF, it might indicate a change from not
perceiving SF in their home to perceiving SF in their home, or for SF
annoyance, from being “not” to “mildly” annoyed or “mildly” to “very”
annoyed. When the range of the odds ratio's 95% confidence interval
(CI) is completely less than one (representing lower odds of moving to
the next response level) or completely greater than one (representing
higher odds of moving to the next response level), the variable is
considered a significant predictor; this is equivalent to the standard
method of assigning variable significance for variables with a p-value of
<0.05.

Because the units of the various covariates differ, we analyze the
strength of the correlations via the Akaike information criterion (AIC).
The AIC represents the impact on the model fit when it is removed from
the regression. A higher AIC value indicates a stronger relationship be-
tween the covariate and the dependent variable,

The overall fit of the model is measured using Nagelkerke's R? (Ry?),
which is a “pseudo-R?"” used as an index of overall model quality [36]. It
is calculated as a measure of the improvement of the log likelihood of the
model compared to that of a null model. To ensure the independence of
the variables included in each model, multi-collinearity is assessed with
the variance inflation factor (VIF) [37]; the maximum VIF for each

model is reported with the results in Section 3.3. Typically, a VIF above
four warrants further investigation into the collinearity among model
variables.

To indicate the efficacy of each model in predicting responses, the
proportion of responses that the regression model correctly predicts is
determined using a “leave-one-out cross validation” procedure. For each
sample, the regression model is calculated without one respondent.
Then, using the model's results, we predict the missing response (either
PSF; or SFA)), repeating for each respondent, and compare those pre-
dicted results to those of the respondents.

Three parallel models for each dependent variable are estimated,
each with progressively more covariates: Basic, Observable, and Sub-
Jective. These covariates are shown in Table 2, and are grouped into
functional classification groups. Column 3 denotes which of the three
models the covariates are used in. The Basic model (“B”) contains all
stratification, controlling, relationship, and stimulus variables. The
Observable model (“0™) adds wind turbine and project characteristics
covariates specific to each individual respondent (i.e., objective vari-
ables). The Subjective model (“S™) expands the scope of covariates to
personal variables, including the degree to which respondents liked the
look of the nearby wind project, and their general annoyance to com-
munity nuisances. In addition to the model and covariate distribution,
Table 2 also contains summary statistics for the covariates, means for
continuous variables, and percentages for categorical variables.
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3. Results and discussion
3.1. Population exposure to shadow flicker

This research utilized a large population with modeled SF and a
robust sample of those that perceive SF across a wide range of modeled
ST hours.

3.1.1. Full sample population

Fig. 3 shows the number of receivers (homes) in our sample with
(dark grey) and without (orange) modeled SF as a function of distance to
the nearest wind turbine. The total number of residences in the sample
increases with increasing distance from the nearest turbine. The total
number of residences with any modeled SF (grey bars) peaks near 1000
m to the nearest turbine because modeled SF fades considerably beyond
that distance.” The proportion of the sample population with modeled
SF (green line) is highest at distances closest to the turbine. Greater than
50% of the sample residences within 550 m of the nearest turbine have
some modeled SF hours.

3.1.2. Sample with modeled shadow flicker

Fig. 4 includes only those receivers with modeled SF. It shows the
different levels of modeled SF hours per year by distance from the
nearest turbine producing SF. (Note that this may differ from the
“nearest turbine” as used in Fig. 3). It also includes the percentage of the
sample that has >8 h/year real-case SF (blue line)—a maximum limit
used in some SF standards (see discussion in Section 1.3). A majority of
residences within 750 m were modeled with real case SF exposure above
8 h per year. Within 500 m, 90% have more than 8 h of modeled real
case annual SF.

3.2. Survey respondent shadow flicker summary
This section presents survey responses used to build perceived SF and

SF annoyance categories and compares them to modeled annual SF
exposure.
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3.2.1. Perceived shadow flicker

Fig. 5 presents the distribution of perceived SF among survey re-
spondents. Each bar represents the proportion of respondents in each
response group and modeled SF exposure category. The width of each
bar is proportional to the sample size in that category.

Tig. 5A provides the full survey sample of SF receivers, while Fig. 5B
presents only those with some modeled SF exposure. Both include three
respondent categories: perceived SF in home, perceived SF on property,
and no perceived SF. The proportion of respondents that notice SF in
their homes increases as the number of annual hours increase. This is
expected, as the more SF a home is modeled to have, the more likely it is
that the resident will report perceiving SF in their home. For individuals
with some modeled SF (>0) at their home, roughly 15% report that they
can perceive SF only on their property but not in their home (shown in
Fig. 5 as “On Property™). This percentage is consistent regardless of SF
exposure levels.

Of those that have modeled SF in the range of 4 to 8 h/year real case,
only about half (52%) reported perceiving SF in their home. We believe
that this disparity is due to other factors that are not considered in this
study that mitigate SF exposure, particularly land cover, the use of
rooms that may be exposed to the SF, whether windows face the wind
turbines, draperies and other window covers, and whether the occu-
pants are home during the SF events.

3.2.2. Shadow flicker annoyance

Fig. 6 presents parallel results for reported annoyance to SF. Fig. 6A
appears to indicate that the distribution of SF annoyance increases with
SF exposure across all respondents. However, it is notable that roughly
half of the respondents in the figure had no modeled SF exposure (and
thus cannot be annoyed by SF in their home). When limited to only
respondents with some modeled SF (Fig. 6B), the distributions between
annoyance levels do not vary appreciably across exposure levels. This
suggests two things: 1) the apparent increase in SF annoyance for all
respondents is driven by the inclusion of the do-not-perceive-SF-in-their-
home category; and 2) there is an insignificant relationship between
modeled SF and SF annoyance in the sample once they are excluded.
This was tested directly and is described in Section 3.3.
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Fig. 3. Distribution of madeled SF by distance® within the full population sample (n = 34,940). The green line indicates the proportion of the sample population with
maodeled SF for each distance group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
“Receivers are binned into 100 m groups, centered on the interval (e.g., the 500 m bin is 450 m to 550 m).

? The decrease in “without modeled SF” beyond 1,900 m for Figs. 3 and 4 is a
result of not modeling SF beyond distances 15 times total turbine height (see
Section 2.1.3).

3.2.3. Distribution of responses, by exposure

To directly compare SF exposure to perceived SF and SF annoyance,
Fig. 7 shows box plots representing all survey respondents. The “box”
provides the 75th, 50th (median [dark line]), and 25th percentile of the
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distribution of the sample. The “tails” on the boxes represent the range
of 95% of the data. The plot reaffirms that the prevalence of perceived SF
in one's home increases with modeled SF exposure. However, the
number of modeled SF hours alone is insufficient to explain reported SF
annoyance among survey respondents.

3.3. Regression results

The results from the three (Basic, Observable, and Subjective) lo-
gistic regression (logit) models for perceived SF and SF annoyance, as
described in Section 2.2.2 and Table 2, are presented in Table 3 and
Table 4.1°

3.3.1. Perceived shadow flicker

The basic perceived SF model (Table 3) correctly predicted perceived
SF for 68% (see “Total Proportion Correct”) of respondents, with an Ry®
of 0.32. With the Observable model, the predictive power of the model
improves, with 71% of responses correctly predicted and an increase of
Ry’ to 0.38. Although adding subjective variables slightly improved the
RN2 to 0.41, the predictive power of the model decreased (though
insignificantly) to 70%. This suggests that perceived SF prediction is not
significantly improved over the Observable model by adding subjective
variables. All models correctly predicted at least 75% of the respondents
that perceived SF in their home (see the green bordered portions of the
bar graphs at the top of Table 3) and about 60% of respondents that did
not perceive SF in their home.

Turning to the regression results, the real-case annual SF hours is the
strongest predictor of perceived SF, with an AIC about four times greater
than the next covariate (22.6 vs. 7.6). Across all three models, a one-
hour increase in annual real-case wind turbine SF is associated with
an increase in the odds of perceiving SF in the home by 12% to 13%.
Logically, quantifiable SF exposure should be a good predictor of
whether a respondent perceives SF or not. The model indicates that,

Real Case SF (hoursfyear) I8 ©.4) [l <& Bl ©.30) [l 0.1
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600 -
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Total Receiver Count
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19 Although we present multivariate correlation results in the regression ta-
bles, we did examine univariate correlations as well. Contact the authors for
more information on those.

1500
Distance to Turbine Contributing Maximum SF (m)
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indeed, a significant dose-response relationship is present. Further, re-
spondents farther than 800 m (~0.5 miles) from the nearest wind tur-
bine had 65% to 66% lower odds of perceiving SF than respondents
within 800 m (see the Distance Bin variable in Table 3). The odds of
perceiving SF in one's home were at least 75% lower for those who
moved into the area after the project was built compared with those who
lived in the area prior to the project's construction (see the move-in-after
variable in Table 3). Project participation did not significantly
contribute to the prediction of perceived SF in one's home.

3.3.2. Shadow flicker annoyance

The SF annoyance results (Table 4) differ substantially from those of
perceived SF. For SF annoyance, the Basic and Observable models are
relatively weak predictive models, with Ry? < 0.27 and less than 49% of
the total responses correctly predicted. Adding subjective variables
considerably increases the model's effectiveness, increasing Ry” to 0.58
and correctly predicting 65% of the responses overall.

In the Basic SF annoyance model, respondent participation in the
project is the most influential predictor (AIC = 25.1); participants had
about 81% lower odds of being annoyed by SF than non-participants.
Annoyance was comparable among project participants that hosted
wind turbines on their properties and those that were compensated
without hosting a turbine, relative to non-participants. After project
participation, a respondent's college education (AIC = 6.6) was the
strongest predictor of SF annoyance; respondents who had completed
college had 57% lower odds of moving to a higher annoyance level than
those that did not attend college. Modeled SF exposure was the third-
strongest correlate: a one-hour annual increase in real case SF was
associated with a 4% increase in the odds of SF annoyance. Age (AIC =
6.0) was the fourth-strongest predictor in the Basic model, with
decreased odds of SF annoyance among older respondents.

Adding objective variables did not increase predictive strength of the
model (see “Observable” model). In fact, none of the observable vari-

Fig. 4. Modeled real-case SF hours per year
bins,” by distance” from the nearest flicker-
producing turbine for receivers with some
modeled SF (n = 4825). The blue line in-
dicates the proportion over 8 h/year. (For
interpretation of the references to colour in
this figure legend, the reader is referred to
the web version of this article.)

“SF ranges are open (“(*) on the left and
closed (*]”) on the right, i.e.,, (4, 8] is4 < x
< 8.

“Receivers are binned into 100 m groups,
centered on the interval (e.g., the 500 m bin
is 450 m to 550 m).

“The decrease in “without modeled SF”
beyond 1,900 meters is a result of not
modeling SF beyond distances 15 times total
turbine height (see Section 2.1.3). The small
increase in SF level for respondents at 1,600
m is due to a small sample size (n = 8); one
of these receivers had three distinct wind
turbines contributing SF annually, Of the
three wind turbines, the farthest turbine at
1,620 meters contributed the most SF; the
other two turbines contributing SF were
within 800 meters of the receiver.
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Fig. 5. Distribution of perceived flicker by real-case SF for (A) all respondents (n = 717) and (B) only respondents with modeled SF (n = 393).
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Fig. 6. Distribution of SF annoyance by Real Case SF for (A) all respondents (n = 717) and (B) only respondents with modeled SF (n = 260).
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Fig. 7. Box plots of SF exposure by respondent reported perceived SF and SF annoyance (perceived SF: n = 717; SF annoyance: n = 260).

ables were significant in predicting SF annoyance. In contrast, all Sub-
jective model variables were significant in predicting the SF annoyance
outcomes. The respondents' stated attitudes toward the aesthetics of the
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Table 3
Perceived SF regression results.
(n=328) Basic Observable Subjective
Nagellerke R? 0.32 0.38 0.41
Area under the curve (AUC) 0.67 0.7 0.69
Maximum VIF 1.85 2,13 2.92
Leave-one-out 180 T

Cross validation results an
Proportion correctly predicted

25%

SF in Home -
No SF in home . ¥ e P

Total proportion correct 0.68 0.71 0.70
Variable OR' (95% CI) AAIC OR' (95% CI) AAIC OR' (95% CI) AAIC
Distance bin 0.35 (0.178,0.678) 7.6 0.35 (0.171,0.699) 6.7 0.34 (0.167,0.699) 6.6
Large project 2.30 (1.039,5.07) 2.2 2.22 (0.907,5.414) 14 1.98 (0.795,4.93) 0.2
College 0.86 (0.507,1.47) e 0.93 (0.533,1.629) -19 0.95 (0.536,1.667) —-2.0
Female 1.10 (0.655,1.848) =19 1.05 (0.605,1.806) =20 0.98 (0.563,1.716) —-2.0
Age 1.00 (0.983,1.018) —2.0 0.99 (0.974,1.011) -1.4 0.99 (0.974,1.012) -1.5
Project participation®,” -3.0 -3.0 -3.5

- Compensated: not a host 1.12 (0.59,2.13) 0.99 (0.501,1.962) 1.23 (0.606,2.501)

- Compensated: turbine host 0.67 (0.271,1.671) 0.62 (0.235,1.627) 0.88 (0.318,2.409)
SF (real case, hours per year) 112 (1.068,1.165) 22.6 1.13 (1.078,1.179) 25.7 1.13 (1.076,1.18) 23.9
Rator diameter 1.02 (0.984,1.057) -0.8 1.02 (0.985,1.061) -0.7
Hub height 1.02 (0.991,1.056) -0.1 1.02 (0.984,1.049) -1.1
Tip speed 0.95 (0.904,0.998) 2.2 0.95 (0.9,0.998) 21
Project age 1.19 (0.901,1.569) -0.5 1.21 (0.906,1.608) —0.4
# of turbines in view 1.00 (0.996,1.012) -1.0 1.00 (0.995,1.011) =15
Move in after 0.23 (0.106,0.51) 11.2 0.25 (0.112,0.563) 9.3
Like look of wind project (neutral)” 4.6

- No 2.65 (0.944,7.417)

- Yes 0.99 (0.388,2.511)
General annoyance 0.93 (0.618,1.404) -1.9

" Compared to those that are not hosting nor being compensated.
* AAIC represents the importance of the variable as a whole.

! 0dds ratio (OR). Bolded and underlined values indicate a significance at p < 0.05.

local wind project (i.e., if they did or did not like the look of it vs. a
neutral response) was by far the strongest correlate (AIC = 62.3)."! The
respondents’ general annoyance to environmental nuisances (AIC =
9.7), if they attended college (AIC = 9.2), their age (AIC = 6.9), the age
of the nearest wind project (AIC = 4.3), and if the respondent was
compensated but not a host were all statistically significant. With sub-
jective variables considered, modeled SF exposure was not a statistically
significant predictor of SF annoyance. The Subjective model correctly
predicted 65% of annoyance levels overall, 73% of the very annoyed
responses, and 79% of not-at-all-annoyed responses.

Moving in after the project was built was found to be a strong pre-
dictor of perceived SF in this study and in previous literature for: atti-
tudes toward wind projects [23]; perceptions of the planning process
[6]; and both the audibility of wind turbine noise in the home and wind
turbine noise annoyance [10]. However, we found moving in after a
project was built was not significantly correlated with SF annoyance.

In summary, although this study found a strong relationship between
modeled SF exposure and perceived SF reported by survey respondents,
the relationship between SF exposure and SF annoyance is much weaker,

! Although not discussed here in detail, liking the look of the turbines was
nuanced among respondents. Those who did like the look did not believe the
turbines were “attractive” but did feel they represented “progress.” Alterna-
tively, those that did not like the look believed they “did not fit" with the
landscape and were “unattractive”,

10

indicating other factors are likely at play that cause annoyance.'”

3.4. Exposure to shadow flicker compared with existing guidelines and
sound levels

The combined survey data, SF exposure data, and data on US county-
level SF exposure limits allow us to examine other relationships. We first
calculate a ratio between worst and real-case SF estimates and compare
that to the 3:1 ratio commonly used in EU SF standards (see Section 1.3).
We then assess modeled exposure against the most commonly enforced
SF limits in our sample (see Section 2.1.5) and examine them relative to
project participation. Finally, we look at the relationship between SF
exposure and sound exposure by comparing SF exposure categories and
modeled sound-level categories.

3.4.1. US state- and county-level shadow flicker ordinances

The data from wind energy siting ordinances for all 50 US counties
represented in this analysis were revealing: most counties in this anal-
ysis (62%) do not enforce any limit on SF exposure. Two states (New
York and Ohio) have enacted statewide SF limits (30 h/year), and only
13 other county-level ordinances were identified (10 at 30 h/year, 2 at 0
h/year, and 1 at 40 h/year). Of the 15 authorities that do specify any
limit on SF exposure, 30 h/year was by far the most common limit.

2 One reviewer pointed out that perceptions of the planning process have
been found to be a strong predictor of wind turbine annoyance [6] and strongly
annoyed individuals [21]. As noted later in the document, this might be a useful
variable to study in future analyses.
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Table 4
SF annoyance regression results.
(n=220) Basic Observable Subjective
Nagelkerke R? 0.23 0.27 0.58
Area under the curve (AUC) 0.63 0.66 0.8
Maximum VIF 1.85 2.07 2.73

Leave-one-out
Cross validation results
Proportion correctly predicted

Very
Mildty
Hot
Mot Mgy Very Net Midly Very Not Mty Very
response Observed response Observed response
Total Proportion Correct 0.49 0.45 0.65
Variable OR' (95% €1 AAIC OR' (95% CN AAIC OR' (95% CI) AAIC
Distance bin 0.51 (0.214,1.235) 0.2 0.57 (0.227,1.45) -0.6 0.39 (0.14,1.091) 1.2
Large project 1.26 {0.54,2.946) -1.7 1.29 (0.519,3.207) -1.7 0.95 (0.329,2.767) -2.0
College 0.43 (0.245,0.755) 6.6 0.42 (0.232,0.745) 6.7 0.33 (0.171,0.632) 9.2
Female 1.55 (0.906,2.648) 0.6 1.56 (0.899,2.72) 0.5 1.58 (0.853,2.92) 0.1
Age 0.97 (0.951,0.991) 6.0 0.97 (0.945,0.988) 7.4 0.96 (0.939,0.987) 6.9
Project participation (non-part.)” ° 2501 23 1.4
- Compensated: not a host 0.19 (0.097,0.374) 0.19 (0.093,0.377) 0.39 (0.177,0.869)
- Compensated: turhine host 0.18 (0.073,0.42) 0.17 (0.067,0.425) 0.55 (0.196,1.565)
SF (real case, hours per year) 1.04 (1.011,1.062) 6.2 1.04 (1.009,1.062) 5.0 1.03 (0.995,1.055) 0.5
Rotor diameter 0.98 (0.944,1.018) -1.0 0.99 (0.943,1.03) -1.4
Hub height 1.02 (0.986,1.051) -0.8 0.99 (0.953,1.024) -1.6
Tip speed 0.98 (0.936,1.029) -1.4 0.96 (0.907,1.017) -0.3
Project age 0.78 (0.585,1.038) 0.9 0.65 (0.467,0.916) 4.3
# of turbines in view 1.00 (0.995,1.008) —-1.8 1.00 (0.997,1.011) -0.8
Move in after 0.53 (0.24,1.189) 0.4 0.60 (0.239,1.524) -0.9
Like look of wind project (neutral)* 62.3
-No 10.88 (3.273,36.158)
- Yes 0.32  (0.108,0.953)
General annoyance 2.39 (1.45,3.945) 9.7

* Compared to those that are not hosting nor being compensated.
? AAIC represents the importance of the variable as a whole.
' Odds Ratio (OR). Bolded and underlined values indicate a significance at p < 0.05.

Shadow Flicker Metric = Real Case == Worst Case

120-

-

60 -

Maximum Minutes SF / day
(minutes / day)

i ' ' ! ! ' : ' !
0 8 30 60 90 120 150 180 210 240
Annual SF (hours / year)

Fig. 8. Comparison of modeled SF exposure metrics for the sample population with modeled SF (n = 4,825).
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Notably, only two of those regions specify a modeling metric (real or
worst)., In the authors' experience, where there is ambiguity as to the
metric, in most circumstances the 30 h/year limit is modeled during
permitting as real case.

3.4.2. Real vs. worst-case ratio and modeled exposure

As described in Section 1.3, Koppen et al. [24], document a common
three-to-one ratio between worst and real case SF guidelines. That is, a
30 h/year real-case limit would allow about three times more SF
exposure than a 30 h/year worst-case limit. In this section, we test if
those relationships were borne out in our data and also examine the
relationship between hours/year and minutes/day, which are some-
times apparently used interchangeably in regulations [24].

Fig. 8 plots the modeled maximum number of minutes of SF in a day
against the annual SF hours for each respondent with any modeled SF in
our sample population (n = 4825). Both the real case (orange) and worst
case (dark grey) modeled values are provided, and a trendline fitted to
the data is superimposed over the scattered data. Horizontal dotted lines
denote 30 and 8 min/day, and, separately, vertical lines denote 30 and 8
h/year. These dotted lines nearly intersect on the solid trendlines of the
scattered worst and real case modeled SF values. This indicates that a
ratio of 30 worst case hours/year is roughly equivalent in our data to the
30 worst case minutes/day, as is 8 real case hours/year and 8 min/day.
Further, the ratio in our data of worst to real case is roughly three to one
(r* = 0.93), which is equivalent to the German guidelines and others
outlined by Koppen et al. [24].

The data from Fig. 8 also indicate that approximately 7% of all
modeled residences in the sample population (including both survey
respondents and non-respondents) exceed either 30 h/year worst case or
8 h/year real case (the “30/8 limit"). Although we do not show distance
in the figure, the data indicate that 21% of residences within 1 km of any
turbine exceed the 30/8 limit. As discussed in Section 3.4.1, the majority
of counties in our sample do not apply SF exposure limits, and those that
do fail to specify whether those limits are real or worst case limits, Fig. 8
elucidates that if those limits were in force, compliance would not be
achieved at many residences. However, we found that only 2.3% of
those with modeled SF exceeded 30 h/year real case. This supports our
interpretation that real case is used with 30 h/year standards where the
metric is ambiguous.

3.4.3. Survey respondent exposure summary

Considering the sample of survey respondents (n = 717), 27% exceed
the 30/8 limits. This percentage is above the 7% of the full sample
population discussed in Section 3.4.2 because the respondents are, by
design, closer to turbines than the general population and have a higher
preponderance of exceeding the limits. Considering the 404 survey re-
spondents with any modeled SF, 50% exceeded either of the 30/8 limits,
with 37% exceeding both.

Individuals living closest to wind turbines are also likely to host a
turbine or are otherwise being compensated, which could accommodate
higher levels of SF as part of that agreement. Table 5 shows that at least
70% of the turbine hosts experience SF above either limit, 55% or more
of the compensated neighbors exceed the limits, and at least 34% of the
non-participants have modeled SF that are above both limits.

Importantly, in line with the findings above, the group that exceeds
the 30/8 limits is no more likely to be annoyed by SF than respondents
who are under the limit.
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Table 5
SF exposure in the United States above the “30/8 limit" with respect to project
participation for survey respondents with modeled SF.

Project Above 8 hours per year Above 30 hours per year n
participation real case worst case

Non-participants 37% 34% 249
Compensated 60% 55% 92
Turbine host 73% 71% 41

3.4.4. Combined wind turbine noise and shadow flicker exposure

We examine if sound-level limits can be used as a proxy for SF limits,
which, as discussed in Section 3.4.1, are rarely applied. Noise exposure,
for our purposes here, is modeled as a one-hour equivalent continuous
A-weighted sound level (L;)."” In the US jurisdictions we reviewed, 45
dBA and 50 dBA are commonly applied noise limits (or greater for
participating homes), although metrics and averaging times vary
considerably.

Fig. 9 shows the proportion of the population in real-case SF cate-
gories with respect to wind turbine sound-level categories. For homes
with modeled wind turbine sound level 40 dBA or below, 98% do not
exceed the 8-hour real-case SF limit, while between 40 and 45 dBA, 90%
do not exceed the limit. Alternatively, for those between 45 and 50 dBA
or greater than 50 dBA, only 40% and 25% are below the 8-hour real-
case SF limit, respectively. These results indicate that a sound limit of
45 dBA is a decent proxy for meeting a SF limit of 8 h/year real case.
Paradoxically, low SF exposure limits are not a good a predictor of low
noise exposure, as very low (or no) SF occurs across all sound-level
categories.

The relationships are different for SF annoyance. Fig. 10 shows the
distribution of respondent SF annoyance by turbine sound-level cate-
gory. Fig. 10A appears to show a relationship between SF annoyance and
sound level. Higher proportions of respondents exposed to sound at
progressively higher sound levels reported some level of SF annoyance
at higher rates. However, as outlined in Section 2.1.4, only those
experiencing SF in their home can be annoyed by it in their home.
Considering that cohort, we find the absence of a correlation between
sound level and SF annoyance: SF annoyance levels are roughly equally
distributed across sound-level categories (Fig. 10B). The survey data also
indicate that noise and SF annoyance are similar among survey re-
spondents: 71% of those very annoyed by SF (n = 72) indicated that they
are also very annoyed by noise from the wind turbines (data not shown).

4. Conclusions

Although SF has been identified in multiple national surveys as a
potential source of annoyance among wind project neighbors, the
magnitude of SF exposure and drivers of SF annoyance have remained
significantly understudied, leaving both developers and communities in
need of science-based guidance. To help fill that research gap, this study
modeled SF exposure at nearly 35,000 residences, 747 of which were
also survey respondents, and developed models to predict the re-
spondents' stated perceived SF and SF annoyance. In so doing, we pro-
vide information not only on the levels and extent of SF exposure around
US wind projects, but also identify variables that do (and, of equal
importance, do not) predict perception and annoyance to SF. The
research also reports on findings about SF modeling and metrics,
including the relationship between noise, SF exposure, and SF
annoyance.

% Specifically, A-weighted decibels (dBA) are the level of sound weighted to
mimic the perception of the human ear. In this study, we estimate the maximum
expected equivalent continuous sound level over one-hour (L;4), using the I1SO
9613-2 sound propagation standard with mixed ground porosity (G = 0.5),
four-meter receptor heights, and + 2 dB (dB) uncertainty (see [10] for expla-
nation of these terms and more details).
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Fig. 9. Comparison of combined exposure of population to SF and wind turbine noise (by sound-level category) based on modeled real case SF (n = 16,077)."

“For sound-level categories, “a to b” means a < x < b.
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Fig. 10. Distribution of SF annoyance by modeled wind turbine sound-level category for (A) all respondents (n = 717) and (B) only respondents with modeled SF (n

= 260).*
?For sound-level categories, “a to b” means a < x < b.

Perceived SF is found to be largely influenced by observable char-
acteristics, including SF exposure, distance to the nearest turbine, and
whether a respondent moved in after the project was built. Notably, only
about half of those with SF exposure in the range of 4 to 8 h per year real
case reported perceiving SF in their home. When applied to a predictive
model of an individual's perceived SF in their home, up to 71% of the
perceived SF regression model predictions were correct.

Of respondents with modeled SF at their home, 17% reported being
highly annoyed. SF annoyance is found to be correlated with one's
subjective response to the look of the wind turbines, general annoyance
to other anthropogenic sounds, level of education, and age. With sub-
jective factors included, an individual's annoyance to SF was correctly
predicted 65% of the time, with 73% of the “very annoyed” responses
predicted correctly by the model. Importantly, when individual sub-
jective factors were considered, modeled SF exposure was not signifi-
cantly correlated with SF annoyance.

In summary, we find modeled SF levels predict one's perceived SF,
but once perceived, higher levels of SF are not a predictor of higher
levels of self-reported annoyance. These concepts are similar to findings
we previously observed for wind turbine noise—that modeled wind
turbine sound level was a robust predictor of wind turbine audibility but
not annoyance to wind turbine noise [10,22].

SF exposure is regulated in relatively few jurisdictions across the US
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analysis area. The most commonly enforced limit across the United
States in the project areas evaluated in our study is 30 h/year, similar in
value to German worst-case guidelines and other standards found in the
EU. However, in the United States, the metric is rarely defined as real or
worst case, and, in our experience, is most often interpreted during the
application process as real case. Of the full sample population, 7%
exceed 30 h worst case or 8 h real case. Of the 404 survey respondents
with any modeled SF, 50% exceeded the 30/8 worst-case/real-case
limits, though a majority are project participants, and 2.3% exceeded
30 h/year real-case. Respondents exceeding those limits were no more
likely to be very annoyed by SF than other respondents.

Regulated SF exposure limits are designed to mitigate annoyance, yet
we find no clear dose-response relationship between SF exposure and
self-reported annoyance when subjective variables are considered.

However, several of our findings can be helpful to inform SF regu-
latory standards. Overall, we found that an average relationship of worst
to real case of roughly 3 to 1, following the relationship enforced in
many EU jurisdictions. Including land-cover data in the analysis, has
little effect on modeled levels for most residences, but could be used to
obtain more realistic estimates of SF at individual locations, especially if
high-resolution ground cover data are available. Finally, more than 90%
of homes exposed to wind turbine sound levels below a typical limit of
45 dBA Ly also received less than 8 h/year real-case SF. These results
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imply that sound-level limits might act as a decent proxy for SF limits.
This paper looks at self-reported annoyance, which is more of an
attitudinal variable than annoyance stress. Accordingly, SF emissions
could reduce the community acceptance of wind turbines and thus
should be reduced to the extent feasible.
We offer several suggestions for future research:

(1) Future research should further examine the interactive impacts of
SF, sound, and visual perception on wind project neighbors and
their perceived levels of annoyance.

(2) Although SF is typically regulated by exposure (i.e., minutes or
hours), we find that SF exposure is not significantly correlated
with annoyance. If a goal is set to reduce SF annoyance, though,
future research, in the United States and in Europe, should study
other approaches, metrics, or standards to mitigate SF
annoyance.

(3) Wind energy is rapidly expanding on a global scale, yet, to our
knowledge, in-depth studies of SF exposure and annoyance have
been conducted in few regions. Researchers should seek to
replicate these types of analyses in more regions where wind
energy is deployed. Additional survey questions could reveal
more factors leading to annoyance such as time-of-day impacts,
work and sleep schedules, activity interruptions, and measures
taken to mitigate SF, such as shutting down the wind turbines
during periods of intense SF.'*

(4) Pohletal. [29] used a weighted shadow duration (WSD) variable,
which accounted for modeled SF hours and the number of shaded
rooms and outdoor areas in a home. They found a consistent
significant relationship between WSD and SF annoyance; these
data were not available for this study. Future case studies,
though, could seek to replicate Pohl et al.'s methodology to test if
that relationship is robust, as well as, potentially, exploring other
variables that might modify modeled SF. These variables include:

Table Al
Count and percentage data for Fig. 5A.

Energy Research & Social Science 87 (2022) 102471

the prevalent time-of-day SF is experienced, the intensity of the
SF based on the turbine's distance and the number of turbines
creating the SF.

The annoyance stress scale (AS-scale) as developed by Hiibner
et al. [22], may provide an improved metric from a policy or
regulatory perspective to protect public health over self-reported
annoyance. Self-reported annoyance (without accounting for
stress and coping mechanisms, for example) may miss the full
weight of the responses of unique individuals. Indeed, this is a
promising area for future study for wind turbine SF, noise, and
public acceptance in general.
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Appendix A. Data tables

Count Percentage
No SF On property In home No SF On property In home
Oh 30 12 11 93% 4% 3%
>0& <4h 66 13 27 62% 12% 25%
>4 & <8h 38 11 54 37% 11% 52%
>8 & <30h 28 16 110 18% 10% 71%
>30h 0 3 27 0% 10% 90%
Table A2
Count and percentage data for Fig. 5B.
Count Percentage
No SF On property In home No SF On property In home
>0& <4 h 66 13 27 62% 12% 25%
>4 & <8h 38 11 54 37% 11% 52%
>8& <30h 28 16 110 18% 10% 71%
>30h 0 3 27 0% 10% 90%

' Shutting down the turbines was suggested by a reviewer who is familiar
with a German requirement to limit SF hours below a certain threshold.
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Table A3
Count and percentage data for Fig. 6A.

Energy Research & Social Science 87 (2022) 102471

Count Percentage
No SF in home Not Mildly Very No SF in home Not Mildly Very
Oh 301 13 4 6 93% 4% 1% 2%
>0& <4h 66 17 14 9 62% 16% 13% 8%
>4 & <8 h 38 26 23 16 37% 25% 22% 16%
>8& <30h 28 45 45 35 18% 29% 29% 23%
>30h [t} 11 12 7 0% 37% 40% 23%
Table A4
Count and percentage data for Fig. 6B.
Count Percentage
Not Mildly Very Not Mildly Very
>0& <4h 17 14 9 43% 35% 23%
>4 & <8h 26 23 16 40% 35% 25%
>8& <30h 45 45 35 36% 36% 28%
>30h 11 12 7 37% 40% 23%
Table AS
Count and percentage data for Fig. 10A.
Count Percentage
No SF in home Not Mildly Very No SF in home Not Mildly Very
<40 dBA 212 13 11 5 88% 5% 5% 2%
>40 & <45 dBA 166 44 40 28 60% 16% 14% 10%
>45 dBA 55 55 47 40 28% 28% 24% 20%
Table A6
Count and percentage data for Fig. 108,
Count Percentage
Not Mildly Very Not Mildly Very
<40 dBA 8 9 2 42% 47% 11%
>40 & <45 dBA 38 38 27 37% 37% 26%
>45 dBA 53 47 38 38% 34% 28%
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